How do you factor #(z-4)^3-4(z-4) #?
1 Answer
Apr 7, 2016
#(z-4)^3 - 4(z-4)=(z-4)(z-6)(z-2)#
Explanation:
Separate out the common
#a^2-b^2 = (a-b)(a+b)#
with
#(z-4)^3 - 4(z-4)#
#=(z-4)((z-4)^2-4)#
#=(z-4)((z-4)^2-2^2)#
#=(z-4)((z-4)-2)((z-4)+2)#
#=(z-4)(z-6)(z-2)#