How do you find a power series representation for #f(x)= 1/(1+x)# and what is the radius of convergence?

1 Answer
Oct 5, 2015

#sum_(n=0)^oo (-1)^n x^n# with radius of convergence #1#

Explanation:

Start writing out a power series which when multiplied by #(1+x)# gives #1#...

#1 = (1+x)(1-x+x^2-x^3+x^4-...)#

We choose each successive term to cancel out the extraneous term left over by the previous ones.

Then writing it out formally...

#(1+x) sum_(n=0)^N (-1)^n x^n#

#= sum_(n=0)^N (-1)^n x^n + x sum_(n=0)^N (-1)^n x^n#

#= sum_(n=0)^N (-1)^n x^n - sum_(n=1)^(N+1) (-1)^n x^n#

#= (-1)^0x^0 - (-1)^(N+1)x^(N+1) = 1 - (-x)^(N+1)#

So if #abs(x) < 1#, then #(-x)^(N+1) -> 0# as #N->oo# and we find

#(1+x) sum_(n=0)^oo (-1)^n x^n = 1#

Conversely, if #abs(x) >= 1# then #lim_(N->oo) (-x)^(N+1)# does not exist and the sum does not converge.

So the radius of convergence is #1#