How do you find a unit vector that is orthogonal to a and b: a = 7 i − 4 j + 8 k and b = −7 i + 9 j + 4 k?

1 Answer
Sep 27, 2016

#"The reqd. unit vector"=-88/sqrt16025i-84/sqrt16025j+35/sqrt16025k#

#~~1/126.59(-88i-84j+35k)#

Explanation:

We know from Vector Geometry that the Vector or Outer

Product of #veca & vecb#, i.e., #vecaxxvecb# is orthogonal

to both of them.

The Unit Vector, then, is, #(vecaxxvecb)/||(vecaxxvecb)||#.

Now, #vecaxxvecb=(7,-4,8)xx(-7,9,4)#

#=|(i,j,k),(7,-4,8),(-7,9,4)|#

#=(-16-72)i-(28+56)j+(63-28)k#

#=-88i-84j+35k#

#:. ||(vecaxxvecb)||=sqrt{(-88)^2+(-84)^2+35^2}#

#=sqrt(7744+7056+1225)=sqrt16025~~126.59#.

Hence, the reqd. unit vector#=-88/sqrt16025i-84/sqrt16025j+35/sqrt16025k#

or, #~~1/126.59(-88i-84j+35k)#

Enjoy Maths.!