How do you find a unit vector that is orthogonal to both u= - 6i + 4j + k and v= 3i + j + 5k?

1 Answer
May 17, 2017

The unit vector is #=1/1774〈19,33,-18〉#

Explanation:

The vector perpendicular to 2 vectors is calculated with the determinant (cross product)

#| (veci,vecj,veck), (d,e,f), (g,h,i) | #

where #〈d,e,f〉# and #〈g,h,i〉# are the 2 vectors

Here, we have #veca=〈-6,4,1〉# and #vecb=〈3,1,5〉#

Therefore,

#| (veci,vecj,veck), (-6,4,1), (3,1,5) | #

#=veci| (4,1), (1,5) | -vecj| (-6,1), (3,5) | +veck| (-6,4), (3,1) | #

#=veci(4*5-1*1)-vecj(-6*5-1*3)+veck(-6*1-4*3)#

#=〈19,33,-18〉=vecc#

Verification by doing 2 dot products

#〈19,33,-18〉.〈-6,4,1〉=-6*19+4*33-1*18=0#

#〈19,33,-18〉.〈3,1,5〉=19*3+1*33-5*18=0#

So,

#vecc# is perpendicular to #veca# and #vecb#

The unit vector is

#hatc=vecc/(||vecc||)=1/sqrt(19^2+33^2+18^2)*〈19,33,-18〉#

#=1/1774〈19,33,-18〉#