How do you find a unit vector that is perpendicular to both #-2i + j + 3k# and #i - j - 2k#?

1 Answer
Jun 27, 2016

#hat e = {1/sqrt(3) hat i,-1/sqrt(3) hat j,1/sqrt(3) hat k} #

Explanation:

Given two vectors #vec u# and #vec v#, if they are linearly indepedend we can a unit vector perpendicular to both as follows.

#hat e = (vec u xx vec v)/norm(vec u xx vec v) = -(vec v xx vec u)/norm(vec u xx vec v) #

In the present case

#{-2hat i, 1 hat j, 3 hat k}xx{1 hat i, -1 hat j, -2 hat k} = {1 hat i,-1 hat j,1 hat k}#

then

#hat e = {1/sqrt(3) hat i,-1/sqrt(3) hat j,1/sqrt(3) hat k} #