How do you find a unit vector u in the same direction as the vector ⟨1,−2,−3⟩?

1 Answer
Jun 20, 2016

#vec v = { {1,-2,-3}}/sqrt(14)#

Explanation:

A unit vector is a vector #vec u# such that

#norm vec u = 1#

Given a vector #vec V ={1,-2,-3}# the way to find its associated unit vector #vec v# is normalizing it. Then

#vec v = vec V/(norm vec V) ={ {1,-2,-3}}/sqrt(1^2+(-2)^2+(-3)^2} = { {1,-2,-3}}/sqrt(14)#.

We know that #<< vecV,vec V >> = norm(vec V)^2# then

#<< vec v, vec v >> = << vec V/(norm vec V) , vec V/(norm vec V) >> = << vec V, vec V>>/norm(vec V)^2 = norm(vecV)^2/norm vecV^2 = 1#