How do you find all #cos2x-cos6x=0# in the interval #[0,2pi)#?

1 Answer

#0, pi/4, pi/2, (3pi)/4, pi, (5pi)/4, (3pi)/2, (7pi)/4#

Explanation:

Use trig identity:
#cos a - cos b = - 2sin ((a+b)/2)sin ((a - b)/2)#
In this case:
#(a + b)/2 = 4x#
#(a - b)/2 = 2x#
#cos (2x) - cos (6x) = 2sin (4x).sin (2x) = 0#
a. #sin 2x = 0# --> Unit circle gives --> #2x = kpi#
#x = (kpi)/2#
b. #sin 4x = 0-># Unit circle --> #4x = kpi#
#x = (kpi)/4 #
Answers for #(0, 2pi)#:
#0, pi/4, pi/2, (3pi)/4, pi, (5pi)/4, (3pi)/2, (7pi)/4#