#dy/dx=lim_(h->0)(y(x+h)-y(x))/h = lim_(h->0)(1/sqrt(1-x-h)-1/sqrt(1-x))/h#
but
#(1/sqrt(1-x-h)-1/sqrt(1-x))/h=1/h(1/sqrt(1-x-h)-1/sqrt(1-x))=#
#=1/h(1/sqrt(1-x-h)-1/sqrt(1-x))((1/sqrt(1-x-h)+1/sqrt(1-x))/(1/sqrt(1-x-h)+1/sqrt(1-x)))=#
#=1/h((1/(1-x-h)-1/(1-x))/(1/sqrt(1-x-h)+1/sqrt(1-x)))=#
#=1/h(1-x-1+x+h)/((1-x-h)(1-x))//(1/sqrt(1-x-h)+1/sqrt(1-x))=#
#=1/((1-x-h)(1-x))((sqrt(1-x-h)sqrt(1-x))/(sqrt(1-x-h)+sqrt(1-x)))#
now
#dy/dx=lim_(h->0)1/((1-x-h)(1-x))((sqrt(1-x-h)sqrt(1-x))/(sqrt(1-x-h)+sqrt(1-x)))=1/(1-x)^2(1-x)/(2sqrt(1-x)) = 1/2(1-x)^(-3/2)#