How do we find the differential of #y=x^2+1# from first principle?

1 Answer
Mar 19, 2017

#(dy)/(dx)=2x-2#

Explanation:

According to fist principle, if #y=f(x)#

then #(dy)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h#

Here #f(x)=(x-1)^2+1#

therefore #f(x+h)=(x+h-1)^2+1#

and #f(x+h)-f(x)#

= #(x+h-1)^2+1-(x-1)^2+1#

= #(x+h-1)^2-(x-1)^2#

= #(x+h-1+x-1)(x+h-1-x+1)#
- using #a^2-b^2=(a+b)(a-b)#

= #h(2x+h-2)#

and #(dy)/(dx)=Lt_(h->0)(h(2x+h-2))/h#

= #Lt_(h->0)(2x+h-2)#

= #2x-2#