How do you find f'(x) using the definition of a derivative for #f(x)=cosx#?

2 Answers
Oct 23, 2015

#(cosx)'=-sinx#

Explanation:

According to the definition:

#f'(x_0)=lim_{h->0}(f(x_0+h)-f(x_0))/h#

If we use this definition for #f(x)=cosx# we get:

#f'(x_0)=lim_{h->0}(cos(x_0+h)-cosx_0)/h#

#f'(x_0)=lim_{h->0}(-2sin((x_0+h+x)/2)*sin((x_0+h-x_0)/2))/h#

#f'(x_0)=lim_{h->0}(-2sin(x_0+h/2)sin(h/2))/h#

#f'(x_0)=lim_{h->0}(-sin(x_0+h/2)sin(h/2))/(h/2)#

#f'(x_0)=lim_{h->0}(-sin(x_0+h/2))*lim_{h->0}sin(h/2)/(h/2)#

For further calculation we will use the identity:

#lim_{x->0}sinx/x=1#

So the left limit is #-sinx_0#, and the right is #1#. Finally we get, that

#f'(x_0)=-sinx_0#

Oct 23, 2015

Here is an alternative using #cos(A+B) = cosAcosB-sinAsinB#

Explanation:

#f(x) = cosx#

#f'(x) = lim_(hrarr0)(cos(x+h)-cosx)/h#

# = lim_(hrarr0)(cosxcos h-sinxsin h-cosx)/h#

# = lim_(hrarr0)(cosxcos h-cosx-sinxsin h)/h#

# = lim_(hrarr0)(cosxcos h-cosx)/h-(sinx sin h)/h)#

# = lim_(hrarr0)(cosx(cos h-1)/h-sinx (sin h)/h)#

# = [lim_(hrarr0)cosx] [lim_(hrarr0)(cos h-1)/h]-[lim_(hrarr0)sinx][ lim_(hrarr0)(sin h)/h]#
(Provided that these 4 limits exist, which they do.)

# = [0][1]-[sinx][1] = -sinx#

That is: #f'(x) = -sinx#