How do you find f'(x) using the definition of a derivative for #f(x)=(x+1)/(x-1) #?
1 Answer
Apr 16, 2018
We have:
#f'(x) = lim_(h->0) (f(x + h) - f(x))/h#
#f'(x) = lim_(h-> 0) ((x+ h + 1)/(x+ h - 1) - (x + 1)/(x -1))/h#
#f'(x) = lim_(h->0) ((x+ h + 1)(x -1) - ((x + 1)(x + h - 1)))/(h(x + h - 1)(x - 1))#
#f'(x) = lim_(h->0) ((x^2 + hx + x - x - h - 1 - (x^2 + xh - x + x + h - 1)))/(h(x + h - 1)(x- 1))#
#f'(x) = lim_(h->0) (-2h)/(h(x + h - 1)(x - 1))#
#f'(x) = -2/(x - 1)^2#
We woudl have obtained the same answer using the quotient rule.
Hopefully this helps!