How do you find #[fog](x)# and #[gof](x)# given #f(x)=2x-3# and #g(x)=x^2-2x#?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

12
Feb 17, 2018

Answer:

The answers are #[email protected](x)=2x^2-4x-3#
And #[email protected](x)=(2x-3)(2x-5)#

Explanation:

#f(x)=2x-3#

#g(x)=x^2-2x#

#=f(g(x))=f(x^2-2x)=2(x^2-2x)-3#

#=2x^2-4x-3#

#[email protected](x)=g(f(x))=g(2x-3)=(2x-3)^2-2(2x-3)#

#=(2x-3)(2x-3-2)#

#=(2x-3)(2x-5)#

#[email protected](x)[email protected](x)#

Was this helpful? Let the contributor know!
1500
Impact of this question
5703 views around the world
You can reuse this answer
Creative Commons License