How do you find MacLaurin's Formula for #f(x)=sin(2x)# and use it to approximate #f(1/2)# within 0.01?

1 Answer
Mar 8, 2017

#f(1/2) = 4241/5040 + R# with #abs(R)<0.0084#

Explanation:

Start from the MacLaurin expansion of #sint#:

#sint = sum_(n=0)^oo (-1)^n t^(2n+1)/((2n+1)!)#

substitute #t=2x#

#f(x) = sin(2x) = sum_(n=0)^oo (-1)^n (2x)^(2n+1)/((2n+1)!)#

So for #x= 1/2#

#f(1/2) = sum_(n=0)^oo (-1)^n (2*1/2)^(2n+1)/((2n+1)!) = sum_(n=0)^oo (-1)^n /((2n+1)!)#

Using Lagrange's formula for the error we have:

#R_n(1/2) = [d^(n+1)/(dx)^(n+1) sin(2x)]_(x=c)/((n+1)!)(1/2)^(n+1)#

where #0 < c < 1/2#.

Now we have:

#d^(n+1)/(dx)^(n+1) sin(2x) = 2^(n+1)sin(x+((n+1)pi)/2)#

so as #abs sin x <= 1#:

#abs([d^(n+1)/(dx)^(n+1) sin(2x)]_(x=c)) <= 2^(n+1)#

and then:

#abs(R_n(1/2)) <= 2^(n+1)/((n+1)!)(1/2)^(n+1)#

that is:

#abs(R_n(1/2)) <= 1/((n+1)!)#

Thus we have to determine #n# such that:

#1/((n+1)!) <= 0.01 #

which is satisfied for #n >= 4#

In conclusion we have:

#f(1/2) = 1-1/6+1/120-1/5040+R_4 = (5040-840+42-1)/5040+R_4 = 4241/5040+R_4 ~=0.84#

Where #abs(R_4) < 1/120#