How do you find the 4th root of #2 (cos (pi/4) + isin(pi/4)) #?
1 Answer
The principal
#root(4)(2(cos(pi/4)+i sin(pi/4)))=root(4)(2)(cos(pi/16) + i sin(pi/16))#
There are
Explanation:
In general, if
#root(n)(r(cos theta + i sin theta)) = root(n)(r)(cos (theta/n) + i sin (theta/n))#
So in our example:
#root(4)(2(cos(pi/4)+i sin(pi/4)))=root(4)(2)(cos(pi/16) + i sin(pi/16))#
Note that the primitive Complex
#i root(4)(2)(cos(pi/16) + i sin(pi/16)) = root(4)(2)(cos((5pi)/16)+i sin((5pi)/16))#
#i^2 root(4)(2)(cos(pi/16) + i sin(pi/16)) = root(4)(2)(cos(-(7pi)/16)+i sin(-(7pi)/16))#
#i^3 root(4)(2)(cos(pi/16) + i sin(pi/16)) = root(4)(2)(cos(-(3pi)/16)+i sin(-(3pi)/16))#