How do you find the 6 trig functions of 330 degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 7, 2015 Trig unit circle gives: #sin (330) = sin (360 - 30) = -sin 30 = -1/2# (trig table) #cos (330) = cos (360 - 30) = cos 30 = (sqr3)/2#(trig table) #tan (330) = (-1/2)(2/(sqr3)) = -1/(sqr3) = -(sqr3)/3# #cot (330) = -sqr3# #sec (330) = 2/(sqr3) = (2.sqr3)/3# #csc (330) = -2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 21565 views around the world You can reuse this answer Creative Commons License