How do you find the amplitude, period, vertical and phase shift and graph #y=3csc[1/2(theta+60)]-3.5#?

1 Answer
Aug 13, 2018

See explanation and graphical depiction.

Explanation:

csc values #notin ( - 1, 1 )#. #theta# is x, here..

#y = 3 csc ( 1/2 ( x + pi/3 )) - 3.5#

#notin ( 3(-1)-3.5, 3( 1 ) - 3.5 ) = ( -6.5, - 0.5 )#

# x ne# ( asymptotic zeros of #sin (1/2 ( x + pi/3 ))#

#( 2 k + 1 ) pi/3,#

k = 0, +-1, +-2, +-3, ...#

The period is the period of #sin (1/2 ( x + pi/3 )): (2pi)/(1/2)= 4pi#

Twisted #oo#-wave amplitude : 1/2 ( period ) = #3pi#.

Vertical shift #= - 3.5 rArr# axis is# y = - 3. 5#

Phase shift = #-1/3pi#..

See graph, depicting all these aspects.
graph{(1/3(y+3.5) sin (1/2(x+1/3pi))-1)(x+7/3pi +0.0001y)(x-5/3pi +0.0001y)(y+3.5)(y+0.5) (y+6.5)(x + pi/3 +0.0001y)=0[ -10 10 -13.5 6.5]}

Here, the marked period : #x in ( - 7/3 pi, 5/3 pi )#

The phase shift marker: x = - pi/3