How do you find the angle between the vectors #u=6i+3j# and #v=-4i+4j#?
1 Answer
Explanation:
The angle
# vec A * vec B = |A| |B| cos theta #
By convention when we refer to the angle between vectors we choose the acute angle.
So for this problem, let the angle betwen
#vec u=6 ulhati+3ulhatj=((6),(3))# and#vec v=-4ulhati+4ulhatj=((-4),(4))#
The modulus is given by;
# |vec u| = |((6),(3))| \ \ \ = sqrt(6^2+3^2)=sqrt(36+9)=sqrt(45)=3sqrt(5) #
# |vec v| = |((-4),(4))| = sqrt(-4^2+4^2)=sqrt(16+16)=sqrt(32)=4sqrt(2) #
And the scaler product is:
# vec u * vec v = ((6),(3)) * ((-4),(4))#
# \ \ \ \ \ \ \ \ \ \ = (6)(-4) + (3)(4)#
# \ \ \ \ \ \ \ \ \ \ = -24+12#
# \ \ \ \ \ \ \ \ \ \ = -12#
And so using
# -12 = 3sqrt(5) * 4sqrt(2) * cos theta #
# :. cos theta = (-12)/(12sqrt(5) sqrt(2))#
# :. cos theta = -0.316227 ... #
# :. theta = 108.4349 °#
# :. theta = 108 °# (3sf)
So the acute angle between the vectors is