How do you find the antiderivative of #int 1/(3x-7)^2 dx# from [3,4]?
1 Answer
Dec 6, 2016
We can rewrite this as
We let
#=>int_3^4(u)^-2(1/3)du#
#=>1/3int_3^4(u)^-2du#
#=>1/3(-1/2u^-1)|_3^4#
#=>-1/(6u)|_3^4#
#=>-1/(6(3x- 7))|_3^4#
#=>-1/(18x - 42)|_3^4#
We now evaluate using
#=>-1/(18(4) - 42) - (-1/(18(3) - 42))#
#=>-1/30 + 1/12#
#=>1/20#
Hopefully this helps!