How do you find the antiderivative of #int cos(pit)cos(sin(pit))dt#?
1 Answer
Jan 14, 2017
Explanation:
Let's try to simplify the trig function within the trig function by letting
We currently have
#intcos(pit)cos(sin(pit))dt=1/piintcos(sin(pit))*picos(pit)dt#
Substituting in:
#=1/piintcos(u)du#
This is a common integral:
#=1/pisin(u)+C#
Substituting back in
#=1/pisin(sin(pit))+C#