How do you find the antiderivative of #int sin^4xdx#?

1 Answer
Jan 20, 2017

#int sin^4xdx = - (sin^3x cosx )/4-3/8sinxcosx +3/8x+C#

Explanation:

As #d(cosx) = -sinx dx# we can write the integral as:

#int sin^4xdx = int sin^3 sinx dx = - int sin^3 d(cosx)#

and integrate by parts:

#int sin^4xdx = - sin^3x cosx + 3 int sin^2x cos^2x dx#

Now applying the identity:

#cos^2x = 1 - sin^2x#

#int sin^4xdx = - sin^3x cosx + 3 int sin^2x (1-sin^2x) dx#

and as the integral is linear:

#int sin^4xdx = - sin^3x cosx + 3 int sin^2xdx -3intsin^4x dx#

we have now the integral on both sides and we can solve for it:

#int sin^4xdx = - (sin^3x cosx )/4+ 3/4 int sin^2xdx #

We can now apply the same process for the integral:

# int sin^2xdx = -int sinx (dcosx) = -sinxcosx + int cos^2xdx = -sinxcosx + int (1-sin^2x)dx = -sinxcosx + int dx - int sin^2xdx#

and we get:

# int sin^2xdx = -(sinxcosx)/2 +x/2+C'#

Putting it together:

#int sin^4xdx = - (sin^3x cosx )/4-3/8sinxcosx +3/8x+C#

Note that you can write this result in an interesting form: first we use the identity:

#2sinx cosx = sin2x#

#- (sin^3x cosx )/4-3/8sinxcosx +3/8x = - (sin^2x sin2x)/8 -3/16sin2x +3/8x#

than we use:

#sin^2x = (1-cos2x)/2#

#- (sin^2x sin2x)/8 -3/16sin2x +3/8x = - ((1-cos2x) sin2x)/16 -3/16sin2x +3/8x = 1/32sin4x - 1/4sin2x +3/8x#