How do you find the antiderivative of #sin^2 (2x) cos^3 (2x) dx#?

1 Answer
Feb 19, 2017

We start with a u-subsitution, letting #u = 2x#. Then #du = 2dx# and #dx = (du)/2#.

#int sin^2ucos^3u (du)/2#

#1/2intsin^2ucos^3udu#

#1/2intsin^2ucos^2ucosudu#

#1/2intsin^2u(1- sin^2u)cosudu#

#1/2int(sin^2u - sin^4u)cosudu#

Now let #n = sinu#. Then #dn = cosudu# and #du = (dn)/cosu#.

#1/2int(n^2 - n^4)cosu * (dn)/cosu#

#1/2int n^2 -n^4 dn#

#1/2(1/3n^3 - 1/4n^4) + C#

#1/6n^3 - 1/8n^4 + C#

#1/6sin^3u - 1/8sin^4u + C#

#1/6sin^3(2x) - 1/8sin^4(2x) + C#

Hopefully this helps!