#bbr(t) = << t+1, 1/2 t(t+2) >>, qquad 0<=t<=2#
#ds = sqrt(dot x^2 + dot y^2) \ dt#
#dS = ds * 2 pi x = 2 pi (t+1) sqrt((1)^2 + (t+1)^2) \ dt#
#= 2 pi (t+1) sqrt(t^2 + 2t + 2) \ dt#
#S =2 pi int_0^2 dt qquad (t+1) sqrt(t^2 + 2t + 2) #
# =2 pi int_0^2 dt qquad d/dt ( 1/3(t^2 + 2t + 2)^(3/2)) #
# =(2 pi)/3 [ (t^2 + 2t + 2)^(3/2)]_0^2 #
# =(2 pi)/3 ( 10^(3/2) - 2^(3/2))#
#= (2 pi)/3( 10 sqrt(10) - 2 sqrt(2)) approx 60.3 " sq units"#