How do you find the axis of symmetry, and the maximum or minimum value of the function #y=x^2+10x+21#?

1 Answer
May 3, 2017

Using part of the process of completing the square

Axis of symmetry #-> x=-5)#
Vertex #->" minimum "->(x,y)=(-5,-4)#

Explanation:

#color(blue)("Determine axis of symmetry & " x_("vertex"))#

Consider the standardised form of #y=ax^2+bx+c#

Write as #y=a(x^2+b/ax)+c#

then we have:

#x_("vertex")=" axis of symmetry"=(-1/2)xxa/b#

#color(blue)(ul(bar(|" "x_("vertex")=" axis of symmetry"=(-1/2)xx10=-5" "|))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("To determine "y_("vertex"))#

Substitute #x=-5#

#y=x^2+10x+21" "->" "y=(-5)^2+10(-5)+21#

#" "color(blue)(ul(bar(|color(white)(2/2)y_("vertex")=-4" "|)))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#" "color(red)("Vertex "->(x,y)=(-5,-4)#

The coefficient of #x^2->+1# as positive then the graph is of form #uu#. #color(red)("Thus the vertex is a minimum")#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tony B