How do you find the axis of symmetry, graph and find the maximum or minimum value of the function #f(x)=-3x^2+x-5#?

2 Answers
Feb 26, 2018

Axis of symmetry is at #x=1/6#, the maximum value at #-59/12# and minimum value at #-oo#.

Explanation:

The axis of symmetry is basically the #x#-coordinate of the vertex. The #x#- coordinate of a parabola is given by:

#-b/(2a)#, and here:

#a=-3# and #b=1#. Inputting:

#A_s=-b/(2a)#

#A_s=-1/(2*-3)#

#A_s=-1/-6#

#A_s=1/6#

Since the leading coefficient of the equation is negative, the graph opens downward. Therefore, the maximum value is the #y# coordinate of the vertex. We have:

#y=-3x^2+x-5#, and the vertex has #x=1/6#, so:

#y=-3(1/6)^2+1/6-5#

#y=-3(1/36)+1/6-5#

#y=-1/12+1/6-5#

#y=-59/12#

The minimum value is so #-oo#, as the parabola keeps going down.

Graphing such, we can confirm:

graph{-3x^2+x-5 [-9.63, 10.37, -10.64, -0.64]}

Feb 26, 2018

General shape #nn# thus a maximum

#y_("intercept")=-5#

#"No "x_("intercepts")#

Vertex #->(x,y)=(1/6,-59/12)#

Explanation:

Set #y=f(x)=-3x^2+x-5#

Write as #color(green)(y=-3(x^2color(red)(-1/3)x)-5) #
The above is the start of completing the square

#color(white)("d")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)("The axis of symmetry is at")#
#x_("vertex")=(-1/2)xx(color(red)(-1/3)) = color(magenta)(+1/6)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)(y" intercept")#
Consider the form #y=ax^2+bx+c#

#y_("intercept")=c=-5#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)("General shape of the graph")#

As the #x^2# term is negative the general shape is #nn#

Thus the vertex is a maximum.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)("Determine the vertex")#

Found above that #x_("vertex")=1/6#

#color(green)(y=-3color(red)(x)^2+color(red)(x)-5 color(white)("ddd")->color(white)("ddd")y_("vertex")=-3(color(red)(1/6) )^2+color(red)(1/6)-5#

#color(green)(color(white)("dddddddddddddddddd")->color(white)("dd")y_("vertex") =-59/12 )#

As the graph is of form #nn and y_("vertex") =-59/12 # then the vertex is below the x-axis so the is NO x-intercepts.

Vertex #->(x,y)=(1/6,-59/12)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Foot note")#

They would be expecting you to solve for the vertex by completing the square.