How do you find the axis of symmetry, vertex and x intercepts for #y=2x^2+4x-1#?

1 Answer
Jul 28, 2018

Axis of Symmetry : #color(red)(x=(-1))#

Vertex : #color(red)((-1,-3)#

x-intercepts : #color(red)((0.223,0) and (-2.225,0)#

Explanation:

#" "#
We are given the quadratic function

#color(blue)(y=f(x)=2x^2+4x-1#

The general form of the quadratic function is

#color(red)(y=f(x)=ax^2+bx+c#

We have,

#(a=+2); (b=+4) and (c=-1)#

Set

#color(blue)(y = f(x)=0#

#:. color(red)(y=f(x)=2x^2+4x-1=0#

This is our quadratic equation.

To find the Vertex, use the formula #color(red)(((-b)/(2a))#

#rArr (-4)/(2(2)#

#rArr -4/4#

#rArr -1#

This is the x-coordinate value of the Vertex.

To find the y-coordinate value of the Vertex,

substitute this value of #color(green)(x=-1)#

Set #color(red)((x=-1)#

Hence, #color(blue)(y=2(-1)^2+4(-1)-1#

#rArr 2-4-1#

#rArr (-5)+2#

#rArr (-3)#

Hence, the Vertex is #color(red)((-1, -3)#

Set #color(blue)(y=0)# to find the x-intercepts

#rArr 2x^2+4x-1=0#

This is a quadratic equation - a polynomial of degree 2

Use the quadratic formula to find the solutions.

#color(blue)(x_1, x_2 = [-b+- sqrt(b^2-4ac)]/(2a)#

Use the values:

#(a=+2); (b=+4) and (c=-1)#

#color(blue)(x_1, x_2 = [-4+- sqrt(4^2-4(2)(-1))]/(2(2))#

#rArr [-4+- sqrt(16+8)]/(4)#

#rArr [-4+- sqrt(24)]/(4)#

#rArr [-4+- sqrt(4*6)]/(4)#

#rArr [-4+- sqrt(4)*sqrt(6)]/(4)#

#rArr [-4+- 2*sqrt(6)]/(4)#

#x_1, x_2= [[-4+ 2*sqrt(6)]/(4)], [[-4- 2*sqrt(6)]/(4)]#

#x_1, x_2~~ [0.224744871],[-2.224744871]#

#color(blue)(x_1, x_2~~ [0.223],[-2.225]#

These are our x-intercepts.

Axis of Symmetry is the x-coordinate value of the Vertex.

Hence,

Axis of Symmetry : #color(red)(x=(-1))#

Vertex : #color(red)((-1,-3)#

x-intercepts : #color(red)((0.223,0) and (-2.225,0)#

Please examine the graph below for a visual comprehension:

enter image source here

Hope it helps.