How do you find the axis of symmetry, vertex and x intercepts for #y=-2x^2-4x-1#?

1 Answer
Dec 21, 2017

#"see explanation"#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"the equation of the axis of symmetry is "x=h#

#"to obtain this form use "color(blue)"completing the square"#

#• " the coefficient of the "x^2" term must be 1"#

#rArry=-2(x^2+2x)-1#

#• " add/subtract "(1/2"coefficient of x-term")^2" to"#
#x^2+2x#

#y=-2(x^2+2(1)xcolor(red)(+1)color(red)-1))-1#

#color(white)(y)=-2(x+1)^2+2-1#

#color(white)(y)=-2(x+1)^2+1larrcolor(red)"in vertex form"#

#rArrcolor(magenta)"vertex "=(-1,1)#

#"equation of axis of symmetry is "x=-1#

#"to find the x-intercepts set y = 0"#

#rArr-2(x+1)^2+1=0#

#rArr(x+1)^2=1/2#

#rArrx+1=+-1/2=+-1/sqrt2#

#rArrx=-1+-1/sqrt2larrcolor(red)"exact values"#

#rArrx~~-1.71,x~~-0.29larrcolor(red)"x-intercepts"#
graph{(y+2x^2+4x+1)(y-1000x-1000)=0 [-10, 10, -5, 5]}