How do you find the derivative of # cos(1-2x)^2#?
1 Answer
May 11, 2018
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#rArrd/dx(cos(1-2x)^2)#
#=-sin(1-2x)^2xxd/dx((1-2x)^2)#
#=-sin(1-2x)^2xx2(1-2x)xxd/dx(1-2x)#
#=-sin(1-2x)^2xx2(1-2x)xx-2#
#=4(1-2x)sin(1-2x)^2#