How do you find the derivative of # cos(1-2x)^2#?

1 Answer
May 11, 2018

Answer:

#4(1-2x)sin(1-2x)^2#

Explanation:

#"differentiate using the "color(blue)"chain rule"#

#"given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrd/dx(cos(1-2x)^2)#

#=-sin(1-2x)^2xxd/dx((1-2x)^2)#

#=-sin(1-2x)^2xx2(1-2x)xxd/dx(1-2x)#

#=-sin(1-2x)^2xx2(1-2x)xx-2#

#=4(1-2x)sin(1-2x)^2#