How do you find the derivative of #cos2x-5cos^2x#?
2 Answers
May 4, 2018
Explanation:
#"differentiate the terms using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#d/dx(cos2x)=-2sin2x#
#d/dx(-5cos^2x)=10sinxcosx=5sin2x#
#rArrd/dx(cos2x-5cos^2x)#
#=-2sin2x+5sin2x=3sin2x#
May 4, 2018
Explanation:
Given:
Using the chain rule,
For the second part, We find:
Let
So,
So, the whole differential becomes: