How do you find the derivative of #e^(x-1)#?

1 Answer
Sep 5, 2016

#e^(x - 1)#

Explanation:

We have: #e^(x - 1)#

This expression can be differentiated using the "chain rule".

Let #u = x - 1 => u' = 1# and #v = e^(u) => v' = e^(u)#:

#=> (d) / (dx) (e^(x - 1)) = 1 cdot e^(u) #

#=> (d) / (dx) (e^(x - 1)) = e^(u)#

We can now replace #u# with #x - 1#:

#=> (d) / (dx) (e^(x - 1)) = e^(x - 1)#