How do you find the derivative of #f(x) = x^4# using the limit definition?

1 Answer
Sep 20, 2016

See below for using either of 2 definitions.

Explanation:

Using #lim_(hrarr0) (f(x+h)-f(x))/h#

You'll need to expand #(x+h)^4#. Your choices are to multiply

#(x+h)(x+h)(x+h)(x+h)#,

or to use the binomial expansion (with Pascal's triangle if that's how you learned it.)

Either way, you will get

#(x+h)^4 = x^4 + 4x^3h+6x^2h^2+4xh^3+h^4#.

So we have:

#lim_(hrarr0) (f(x+h)-f(x))/h = lim_(hrarr0) ((x+h)^4-x^4)/h#

# = lim_(hrarr0) (x^4 + 4x^3h+6x^2h^2+4xh^3+h^4 - x^4)/h#

# = lim_(hrarr0) (4x^3h+6x^2h^2+4xh^3+h^4)/h#

# = lim_(hrarr0) (cancelh(4x^3+6x^2h^2+4xh^2+h^3))/cancelh#

# = 4x^3#

Using#lim_(trarrx) (f(t)-f(x))/(t-x)#

You'll need to factor #t^4-x^4#. Since, #t=x# make this polynomial eauql to #0#, it must have #t-x# as a linear factor. Using trial and error or polynomial division, we get:

#t^4-x^4 = (t-x)(t^3+t^2x+tx^2+x^3)#.

We have:

#lim_(trarrx) (f(t)-f(x))/(t-x) = lim_(trarrx) (t^4- x^4)/(t-x)#

# = lim_(trarrx) (cancel((t-x))(t^3+t^2x+tx^2+x^3))/cancel((t-x))#

# = lim_(trarrx) (t^3+color(red)(t^2x)+color(green)(tx^2)+color(crimson)(x^3))#

# = x^3+color(red)(x^2x)+color(green)(x x^2)+color(crimson)(x^3)#

# = x^3+color(red)(x^3)+color(green)(x^3)+color(crimson)(x^3)#

# = 4x^3#