How do you find the derivative of #(ln(sin(2x)))^2#?

1 Answer
Apr 15, 2016

#f'(x)=4ln(sin(2x))*cot(2x)#

Explanation:

Chain rule!

#f(x)=(ln(sin(2x)))^2#

let #u=ln(sin(2x))#
now #f(x)=u^2#

so #f'(x)=2u*(du)/dx = 2ln(sin(2x))*(du)/dx#

now to find #(du)/dx#

let #w=sin(2x)#
now #u=ln(w)#

so #(du)/dx=1/w*(dw)/(dx) = 1/sin(2x)*(dw)/(dx)#

now to find #(dw)/(dx)#

let #s=2x#
now #w=sin(s)#

so #(dw)/(dx)=cos(s)*(ds)/(dx) = cos(s)*(ds)/(dx)#

We know that #(ds)/dx = 2# so...

#(dw)/(dx)=cos(2x)*2#

#(du)/dx= 1/sin(2x)*cos(2x)*2#

#f'(x)=2ln(sin(2x))*1/sin(2x)*cos(2x)*2#

simplify

#f'(x)=4ln(sin(2x))*cos(2x)/sin(2x)#

#f'(x)=4ln(sin(2x))*cot(2x)#