How do you find the derivative of #y = ln[(x+3)/x^2)]#?

2 Answers
Dec 2, 2016

#dy/dx = -(x +6)/(x(x +3))#

Explanation:

We let #y = lnu# and #u = (x + 3)/x^2#

Then #dy/(du) = 1/u# and #(du)/dx = (1(x^2) - 2x(x + 3))/(x^2)^2 = (x^2 - 2x^2 - 6x)/x^4 = (-x(x + 6))/x^4 = -(x + 6)/x^3#

The chain rule states that #color(red)(dy/dx= dy/(du) xx (du)/dx#.

#dy/dx = 1/u xx -(x + 6)/x^3#

#dy/dx= (-(x + 6)/x^3)/((x + 3)/x^2)#

#dy/dx= -(x + 6)/x^3 xx x^2/(x + 3)#

#dy/dx = -(x +6)/(x(x +3))#

Hopefully this helps!

Dec 2, 2016

We can also rewrite this the logarithm rules #log(a/b)=log(a)-log(b)# and #log(c^d)=dlog(c)#.

#y=ln((x+3)/x^2)=ln(x+3)-ln(x^2)#

#color(white)(y=ln((x+3)/x^2))=ln(x+3)-2ln(x)#

We should know that #d/dxln(x)=1/x#. Applying the chain rule to this shows us that #d/dxln(u)=1/u*(du)/dx#.

Then:

#dy/dx=1/(x+3)*d/dx(x+3)-2(1/x)#

Since #d/dx(x+3)=1#:

#dy/dx=1/(x+3)-2/x#

Finding a common denominator:

#dy/dx=(x-2(x+3))/(x(x+3))#

#color(white)(dy/dx)=(-x-6)/(x(x+3))#

#color(white)(dy/dx)=-(x+6)/(x(x+3))#