How do you find the derivative of #y =sqrt(1-x^2)#?
3 Answers
#y'=-x/(sqrt(1-x^2))# Using Chain Rule
#y=sqrt(f(x))#
#y'=1/(2sqrt(f(x)))*f'(x)# Similarly, following for the above function,
#y'=(sqrt(1-x^2))'#
#y'=1/(2sqrt(1-x^2))*(1-x^2)'#
#y'=1/(2sqrt(1-x^2))*(-2x)#
#y'=-x/(sqrt(1-x^2))#
Explanation:
Another method is using implicit differentiation like this:
#y = sqrt(1-x^2)#
#y^2 = 1 - x^2#
#x^2 + y^2 = 1#
Now differentiate with respect to
#2x + 2y(dy/dx) = 0#
#x + y(dy/dx) = 0#
#y(dy/dx) = -x#
#(dy/dx) = -x/y#
Finally, make the substitution
#dy/dx = -x/(sqrt(1-x^2))#
Final Answer
Explanation:
Now let
Now apply the chain rule: