How do you find the derivative of #y = x^2 e^(-x)#?

2 Answers
Jul 6, 2016

#dy/dx=xe^-x(2-x).#

Explanation:

#y=x^2e^-x#
#:. dy/dx=x^2*d/dx(e^-x)+e^-x*d/dxx^2#.... [Product Rule for Diffn.]
#=x^2*e^-x*d/dx(-x)+e^-x*2x#...................[Chain rule]
#=-x^2e^-x+2x*e^-x=xe^-x(2-x).#

Jul 6, 2016

#xe^(-x)(2-x)#

Explanation:

Differentiate using the #color(blue)"product rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))#

here #g(x)=x^2rArrg'(x)=2x#

and #h(x)=e^(-x)rArrh'(x)=e^(-x) (-1)=-e^(-x)#
#"-------------------------------------------------------------------"#
Substitute these values into f'(x)

#f'(x)=x^2(-e^(-x))+e^(-x)(2x)=-x^2e^(-x)+2xe^(-x)#

#rArrdy/dx=xe^(-x)(2-x)#