# How do you find the discriminant #x^2+x-12#?

##### 1 Answer

May 3, 2016

49

#### Explanation:

Given a quadratic equation in standard form

#ax^2 +bx+c=0 # Then the discriminant

#color(red)(|bar(ul(color(white)(a/a)color(black)((Delta)=b^2-4ac)color(white)(a/a)|))) # The value of the discriminant gives information on the

#color(blue)" nature of the roots "#

#• b^2-4ac > 0 " roots are real and irrational "# However if

#b^2-4ac " is a square , roots are real and rational"#

#• b^2-4ac=0 " roots are real and equal "#

#• b^2-4ac < " roots are not real "# For the given function here

#x^2+x-12 , a=1,b=1,c=-12#

#rArr b^2-4ac=1^2-(4xx1xx-12)=49# Since

#b^2-4ac > 0 " and a square , roots will be real and rational"#