How do you find the exact value of #2tan^2theta+6tantheta=20# in the interval #0<=theta<2pi#?

2 Answers
Dec 10, 2016

#theta=63.435^o#, #101.1^o#, #243.435^o# and #281.1^o#.

Explanation:

#2tan^2theta+6tantheta=20#

#hArrtan^2theta+3tantheta-10=0#

or #tan^2theta+5tantheta-2tantheta-10=0#

or #tantheta(tantheta+5)-2(tantheta+5)=0#

or #(tantheta-2)(tantheta+5)=0#

i.e. #tantheta=2# or #-5#.

Hence as observed from tables for tangent or scientific calculators, #theta=63.435^o# and #101.31^o# as also #180^o + 63.435^o=243.435^o# and #180^o + 101.31^o=281.31^o# as tangent ratio has cycle of #pi# or #180^o#.

Dec 10, 2016

The answer is #={1.11, 1.77, 4.25, 4.91} rad#

Explanation:

This is a quadratic equation in #tantheta#

You solve this like

#ax^2+bx+c=0#

#2tan^2theta+6tantheta-20=0#

Divide the equation by #2#

#tan^2theta+3tantheta-10=0#

First, we calcuate the discriminant

#Delta=b^2-4ac#

#=3^2-4*1*-10=49#

As #Delta>0#, we have 2 real roots

#tantheta=(-b+-sqrtDelta)/(2a)#

#=(-3+-7)/2#

#tantheta=-5# , and #tantheta=2#

#theta={63.4º,101.3º, 243.4º,281.3º} #

#theta={1.11, 1.77, 4.25, 4.91} rad #