As #sinu=-sqrt5/6# and #u# is in #Q4#, #cosu# is positive and it is given by #cosu=sqrt(1-(-sqrt5/6)^2)=sqrt(1-5/36)=sqrt31/6#
Further, as #cosv=sqrt2/4# and #v# is in #Q4#, #sinu# is neegative and it is given by #sinv=-sqrt(1-(sqrt2/4)^2)=-sqrt(1-2/16)=-sqrt14/4#
Hence #cos(u+v)=cosucosv-sinusinv#
= #sqrt31/6xxsqrt2/4-(-sqrt5/6)xx(-sqrt14/4)=(sqrt62-sqrt60)/24#
and #sec(u+v)=24/(sqrt62-sqrt60)#
#cos(u-v)=cosucosv+sinusinv#
= #sqrt31/6xxsqrt2/4+(-sqrt5/6)xx(-sqrt14/4)=(sqrt62+sqrt70)/24#
and #sin(u-v)=sinucosv-cosusinv#
= #(-sqrt5/6)xxsqrt2/4-sqrt31/6xx(-sqrt14/4)=(-sqrt10+sqrt434)/24#
= #(sqrt434-sqrt10)/24#
Hence, #tan(u-v)=sin(u-v)/cos(u-v)=(sqrt434-sqrt10)/(sqrt62+sqrt70)#