How do you find the first two nonzero terms in Maclaurin's Formula and use it to approximate #f(1/3)# given #f(x)=arcsinx#?

1 Answer
Jun 15, 2017

Knowing that #d/dxarcsinx=1/sqrt(1-x^2)#, let's try to find the Maclaurin series first for #(1-x^2)^(-1/2)#.

Note the binomial series:

#(1+z)^alpha=sum_(k=0)^oo((alpha),(k))z^k#

Where #((alpha),(k))-=(alpha(alpha-1)(alpha-2)...(alpha-k+1))/(k!)#.

So, when #z=-x^2# and #alpha=-1/2#, we see that

#k=0=>((-1/2),(0))(-x^2)^0=1/(0!)=1#

#k=1=>((-1/2),(1))(-x^2)^1=(-1/2)1/(1!)(-x^2)=x^2/2#

#k=2=>((-1/2),(2))(-x^2)^2=(-1/2)(-3/2)1/(2!)x^4=(3x^4)/8#

Continuing this process, if you wish, gives:

#1/sqrt(1-x^2)approx1+x^2/2+(3x^4)/8+(5x^6)/16+(35x^8)/128+...#

Then,

#arcsinx=intdx/sqrt(1-x^2)=int(1+x^2/2+(3x^4)/8+(5x^6)/16+(35x^8)/128+...)dx#

Using the first two nonzero terms, this gives:

#arcsinxapproxx+x^3/6#

Then,

#arcsin(1/3)approx1/3+(1//3)^3/6=1/3+1/(162)=0.339506...#

Compare this to the more exact value, #arcsin(1/3)=0.339837...#