How do you find the focus, vertex, and directrix of #x=1/4y^2+2y-2#?

1 Answer

Focus #(-5, -4)#, and Vertex #(-6, -4)# and Directrix #x=-7#

Explanation:

From the given #x=1/4y^2+2y-2#
Multiply by 4
#4x=y^2+8y_8#
Perform completing the square method
#4x=y^2+8y+16-16-8=0#

#4x=(y+4)^2-24#
#(y--4)^2=4(x+6)#
#(y--4)^2=4(x--6)#

it is now in the Vertex Form
#p=1#
Focus #(-5, -4)#, and Vertex #(-6, -4)# and Directrix #x=-7#
graph{(x-1/4y^2-2y+2)(1000000x+y+7(1000000))=0[-20,20,-10,10]}

God bless you ! I hope you find this useful.