How do you find the important parts of the equation to graph the function #y=(x-2)(x+9)#?

1 Answer
Oct 18, 2015

x-intercepts: #2# and #(-9)#
y-intercept: #(-18)#
vertex: #(-3 1/2, -30 1/4)#

Explanation:

x-intercepts
the values of #x# which cause #y# to be #=0#
Based on the given form: #y=(x-2)(x+9)#
these values are #x=2# and #x=-9#

y-intercept
the value of #y# when #x=0#
#y=(0-2)(x+9) = -18#

vertex
Converting into vertex form: #y=m(x-a)^2+b#
#y=(x-2)(x+9) = x^2+7x-18#
complete the square
#y=x^2+7x+(7/2)^2-18-(7/2)^2#

#color(white)("X") = 1(x-(-7/2))^2+(-121/4)#
which is the vertex form with vertex at #(-7/2,-121/4) = (-3 1/2, -30 1/4)#

We can check the graph to see that these values are reasonable:
graph{(x-2)(x+9) [-60, 60, -40, 25]}