How do you find the integral of #1/cos x#?

1 Answer
Apr 30, 2016

#lnabs(secx+tanx)+C#

Explanation:

Note that #1/cosx=secx#. Thus, we see that

#int1/cosxdx=intsecxdx#

This is an important trigonometric identity:

#intsecxdx=lnabs(secx+tanx)+C#


If you want to know how to find #intsecxdx#, the process is unintuitive, but I've outlined it below:

#intsecxdx=int(secx(secx+tanx))/(secx+tanx)dx=int(secxtanx+sec^2x)/(secx+tanx)dx#

Now, use substitution:

#u=secx+tanx" "=>" "du=(secxtanx+sec^2x)dx#

Note that these are the fraction's numerator and denominator.

#int(secxtanx+sec^2x)/(secx+tanx)dx=int(du)/u=lnabsu+C#

Since #u=secx+tanx#, we obtain

#intsecxdx=lnabs(secx+tanx)+C#