How do you find the integral of 1/tan(x) dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Oct 17, 2015 ln|sinx| + C Explanation: int 1/tanx dx =int 1/(sinx/cosx) dx = int cosx/sinxdx = int (d(sinx))/sinx = ln|sinx| + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1879 views around the world You can reuse this answer Creative Commons License