How do you find the integral of # sin^2 (ax)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Andrea S. Mar 22, 2018 #int sin^2(ax) dx= ( ax-sin(ax)cos(ax) )/(2a)+C# Explanation: Use the trigonometric identity: #sin^2(ax) = (1-cos(2ax))/2# So: #int sin^2(ax) dx= int (1-cos(2ax))/2dx# #int sin^2(ax) dx= 1/2 int dx -1/2 int cos(2ax)dx# #int sin^2(ax) dx= x/2 -1/(4a) int cos(2ax)d(2ax)# #int sin^2(ax) dx= x/2 -1/(4a)sin(2ax) +C# #int sin^2(ax) dx= x/2 -1/(2a)sin(ax)cos(ax) +C# #int sin^2(ax) dx= ( ax-sin(ax)cos(ax) )/(2a)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 67797 views around the world You can reuse this answer Creative Commons License