How do you find the integral of #x^2/sqrt(4x-x^2) dx#?
1 Answer
Mar 8, 2018
Use the substitution
Explanation:
Let
Complete the square in the square root:
#I=intx^2/sqrt(4-(x-2)^2)dx#
Apply the substitution
#I=int(2sintheta+2)^2d theta#
Rearrange:
#I=int(4sin^2theta+8sintheta+4)d theta#
Apply the identity
#I=int(6+8sintheta-2cos2theta)d theta#
Integrate term by term:
#I=6theta-8costheta-sin2theta+C#
Apply the identity
#I=6theta-8costheta-2sinthetacostheta+C#
Reverse the substitution:
#I=6sin^(-1)((x-2)/2)-1/2(x+6)sqrt(4x-x^2)#