How do you find the integral of # (x+3) *sqrt(4-x^2)#?

2 Answers

#3/2x\sqrt{4-x^2}-1/3(4-x^2)^{3/2}+6\sin^{-1}(x/2)+C#

Explanation:

Let #x=2\sin\theta\implies dx=2\cos\theta\ d\theta#

#\therefore \int (x+3)\sqrt{4-x^2}\ dx#

#=\int (2\sin\theta+3)\sqrt{4-4sin^2\theta}\ (2\cos\theta\ d\theta)#

#=\int (2\sin\theta+3)(2\cos\theta)\ (2\cos\theta\ d\theta)#

#=4\int (2\sin\theta+3)\cos^2\theta\ d\theta#

#=4\int (2\cos^2\theta \sin\theta+3\cos^2\theta)\ d\theta#

#=8\int \cos^2\theta \sin\theta\ \d\ theta+12\int \cos^2\theta\ d\theta#

#=-8\int \cos^2\theta(- \sin\theta\ \d\ theta)+12\int \frac{ 1+\cos2\theta}{2}\ d\theta#

#=-8\int \cos^2\theta \ d(\cos\theta)+6\int (1+\cos2\theta)\ d\theta#

#=-8(\frac{\cos^3\theta}{3})+6(\theta+{\sin2\theta}/2)+C#

#=-8/3\cos^3\theta+6\theta+3\sin2\theta+C#

#=6\sin\theta\cos\theta-8/3\cos^3\theta+6\theta+C#

#=6(x/2)\sqrt{1-(x/2)^2}-8/3(1-(x/2)^2)^{3/2}+6\sin^{-1}(x/2)+C#

#=3/2x\sqrt{4-x^2}-1/3(4-x^2)^{3/2}+6\sin^{-1}(x/2)+C#

Jul 27, 2018

# -1/3(4-x^2)^(3/2)+3/2{xsqrt(4-x^2)+4arcsin(x/2)}+C.#

Explanation:

Let us have a Second Solution without using Trigo. Substn.

We will use #intsqrt(a^2-x^2)dx=1/2{xsqrt(a^2-x^2)+a^2arcsin(x/a)}#.

Let, #I=int(x+3)sqrt(4-x^2)dx#.

#:. I=intxsqrt(4-x^2)dx+3intsqrt{2^2-x^2}dx#,

#=I_1+3/2{xsqrt(4-x^2)+4arcsin(x/2)}#, where,

#I_1=intxsqrt(4-x^2)dx#,

#=-1/2intsqrt(4-x^2)(-2xdx)#,

#=-1/2intu^(1/2)du; u=4-x^2, du=-2xdx#,

#=-1/2*u^(1/2+1)/(1/2+1)#,

#=-1/3u^(3/2)#.

#:. I_1=-1/3(4-x^2)^(3/2)#.

Altogether,

#I=-1/3(4-x^2)^(3/2)+3/2{xsqrt(4-x^2)+4arcsin(x/2)}+C.#