# How do you find the intercepts for 3x + 4y = -4?

Jun 16, 2018

$\text{x-intercept "=-4/3," y-intercept } = - 1$

#### Explanation:

$\text{to find the intercepts, that is where the graph crosses}$
$\text{the x and y axes}$

• " let x = 0, in the equation for y-intercept"

• " let y = 0, in the equation for x-intercept"

$x = 0 \Rightarrow 0 + 4 y = - 4 \Rightarrow y = - 1 \leftarrow \textcolor{red}{\text{y-intercept}}$

$y = 0 \Rightarrow 3 x + 0 = - 4 \Rightarrow x = - \frac{4}{3} \leftarrow \textcolor{red}{\text{x-intercept}}$
graph{(y+3/4x+1)((x-0)^2+(y+1)^2-0.04)((x+4/3)^2+(y-0)^2-0.04)=0 [-10, 10, -5, 5]}

Jun 16, 2018

$\frac{x}{-} \left(\frac{4}{3}\right) + \frac{y}{-} 1 = 1$ is the intercept form of the line.

x-intercept $= \left(\frac{4}{3}\right)$, y-intercept $= - 1$

#### Explanation:

Intercept form of equation is $\frac{x}{a} + \frac{y}{b} = 1$

$3 x + 4 y = - 4$

$- \left(\frac{3}{4}\right) x - \cancel{\frac{4}{4}} y = 1$

$\frac{x}{-} \left(\frac{4}{3}\right) + \frac{y}{-} 1 = 1$

x-intercept $= - \left(\frac{4}{3}\right)$, y-intercept $= - 1$