How do you find the max or minimum of #f(x)=-4x^2+5x#?

1 Answer
Sep 25, 2017

#"maximum value "=25/16#

Explanation:

#"using the method of "color(blue)"completing the square"#

#• " ensure coefficient of "x^2" term is 1"#

#• " add/subtract "(1/2"coefficient of x-term")^2#

#f(x)=-4(x^2-5/4x)#

#color(white)(f(x))=-4(x^2-2(5/8)xcolor(red)(+25/64)color(red)(-25/64))#

#color(white)(f(x))=-4(x-5/8)^2+25/16#

#(x-5/8)^2>=0" for "x inRR#

#rArr"maximum value "=25/16" when "x=5/8#
graph{-4x^2+5x [-10, 10, -5, 5]}