Horizontal tangents occur when #dy/dx=0#.
For polar equations, #dy/dx=(dy//d theta)/(dx//d theta)# where #x=rcostheta# and #r=sintheta#. Then, #dy/dx=(d/(d theta)rsintheta)/(d/(d theta)rcostheta)#.
So, horizontal tangents occur when #dy/dx=0#, which is the same as when #dy/(d theta)=0#, or when #d/(d theta)rsintheta=0#.
Here #r=asinthetacostheta#, so #y=rsintheta=asin^2thetacos^2theta#.
We can simplify this by noting that #y=1/4a(4sin^2thetacos^2theta)=1/4a(2sinthetacostheta)^2=1/4asin^2 2theta#.
Differentiating this with the chain rule, we see that #dy/(d theta)=1/4a(2sin^1 2theta)(cos2theta)(2)=asin2thetacos2theta#.
#dy/(d theta)=0# then when either #sin2theta=0# or #cos2theta=0#, which occur at #theta=(kpi)/4,kinZZ#.