How do you find the power #(3-6i)^4# and express the result in rectangular form?

1 Answer
Dec 22, 2016

#(3-6i)^4 = -567+1944i#

Explanation:

I would just square twice in rectangular form:

#(3-6i)^2 = (3(1-2i))^2#

#color(white)((3-6i)^2) = 3^2(1-2i)^2#

#color(white)((3-6i)^2) = 9(1-4i-4)#

#color(white)((3-6i)^2) = 9(-3-4i)#

#color(white)()#

#(9(-3-4i))^2 = 9^2(3+4i)^2#

#color(white)((9(-3-4i))^2) = 81(9+24i-16)#

#color(white)((9(-3-4i))^2) = 81(-7+24i)#

#color(white)((9(-3-4i))^2) = -567+1944i#