How do you find the product of #(5x^2 + 3y + 5) (y+9)#?

2 Answers
Jun 12, 2017

Answer:

#5x^2y+45x^2+3y^2+32y+45#

Explanation:

Let's multiply #5x^2# with #y#, #5x^2# with #9#, #3y# with #y#, #3y# with #9#, #5# with #y#, and #5# with #9#.

#5x^2y#
#45x^2#
#3y^2#
#27y#
#5y#
#45#

Simplifying these,

#5x^2y+45x^2+3y^2+32y+45#

(#32y# because the #27y# and #5y# are like terms, and adds up to #32y#)

Jun 12, 2017

Answer:

#color(green)(3y^2+32y+5yx^2+45x^2+45#

Explanation:

#(5x^2+3y+5)(y+9)#

#color(white)(aaaaaaaaaaaaa)##5x^2+3y+5#
#color(white)(aaaaaaaaaaa)## xx underline(y+9)#
#color(white)(aaaaaaaaaaaaa)##5yx^2+3y^2+5y#
#color(white)(aaaaaaaaaaaaaaaaaa)##45x^2+27y+45#
#color(white)(aaaaaaaaaaaaa)##overline(5yx^2+45x^2+3y^2+32y+45)#

#color(white)(aaaaaaaaaaaaa)##color(green)(3y^2+32y+5yx^2+45x^2+45#